کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438458 | 690275 | 2007 | 7 صفحه PDF | دانلود رایگان |

We propose a storage scheme for a string S[1,n], drawn from an alphabet Σ, that requires space close to the k-th order empirical entropy of S, and allows one to retrieve any substring of S of length ℓ in optimal time. This matches the best known bounds [R. González, G. Navarro, Statistical encoding of succinct data structures, in: Procs CPM, in: LNCS, vol. 4009, 2006, pp. 295–306; K. Sadakane, R. Grossi, Squeezing succinct data structures into entropy bounds, in: Procs ACM-SIAM SODA, 2006, pp. 1230–1239], via the use of binary encodings and tables only. We also apply our storage scheme to the Burrows–Wheeler Transform [M. Burrows, D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994], and achieve a space bound which depends on both the k-th order entropy of S and the k-th order entropy of its BW-transformed string .
Journal: Theoretical Computer Science - Volume 372, Issue 1, 6 March 2007, Pages 115-121