کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438515 | 690285 | 2007 | 16 صفحه PDF | دانلود رایگان |

Shortest path problems can be solved very efficiently when a directed graph is nearly acyclic. Earlier results defined a graph decomposition, now called the 1-dominator set, which consists of a unique collection of acyclic structures with each single acyclic structure dominated by a single associated trigger vertex. In this framework, a specialised shortest path algorithm only spends delete-min operations on trigger vertices, thereby making the computation of shortest paths through non-trigger vertices easier. A previously presented algorithm computed the 1-dominator set in O(mn) worst-case time, which allowed it to be integrated as part of an O(mn+nrlogr) time all-pairs algorithm. Here m and n respectively denote the number of edges and vertices in the graph, while r denotes the number of trigger vertices. A new algorithm presented in this paper computes the 1-dominator set in just O(m) time. This can be integrated as part of the O(m+rlogr) time spent solving single-source, improving on the value of r obtained by the earlier tree-decomposition single-source algorithm. In addition, a new bidirectional form of 1-dominator set is presented, which further improves the value of r by defining acyclic structures in both directions over edges in the graph. The bidirectional 1-dominator set can similarly be computed in O(m) time and included as part of the O(m+rlogr) time spent computing single-source. This paper also presents a new all-pairs algorithm under the more general framework where r is defined as the size of any predetermined feedback vertex set of the graph, improving the previous all-pairs time complexity from O(mn+nr2) to O(mn+r3).
Journal: Theoretical Computer Science - Volume 370, Issues 1–3, 12 February 2007, Pages 94-109