کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
438587 690296 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-improved gaps almost everywhere for the agnostic approximation of monomials
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Self-improved gaps almost everywhere for the agnostic approximation of monomials
چکیده انگلیسی

Given a learning sample, we focus on the hardness of finding monomials having low error, inside the interval bounded below by the smallest error achieved by a monomial (the best rule), and bounded above by the error of the default class (the poorest rule). It is well-known that when its lower bound is zero, it is an easy task to find, in linear time, a monomial with zero error. What we prove is that when this bound is not zero, regardless of the location of the default class in (0,1/2), it becomes a huge complexity burden to beat significantly the default class. In fact, under some complexity-theoretical assumptions, it may already be hard to beat the trivial approximation ratios, even when relaxing the time complexity constraint to be quasi-polynomial or sub-exponential. Our results also hold with uniform weights over the examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 377, Issues 1–3, 31 May 2007, Pages 139-150