کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438622 | 690300 | 2006 | 13 صفحه PDF | دانلود رایگان |

We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is a useful deterministic automaton accepting all suffixes of the word. We show that dawg's of Fibonacci words have particularly simple structure. Our main result is a unifying framework for a large collection of relatively simple properties of Fibonacci words. The simple structure of dawgs of Fibonacci words gives in many cases simplified alternative proofs and new interpretation of several well-known properties of Fibonacci words. In particular, the structure of lengths of paths corresponds to a number-theoretic characterization of occurrences of any subword. Using the structural properties of dawg's it can be easily shown that for a string w we can check if w is a subword of a Fibonacci word in time O(|w|) and O(1) space. Compact dawg's of Fibonacci words show a very regular structure of their suffix trees and show how the suffix tree for the Fibonacci word grows (extending the leaves in a very simple way) into the suffix tree for the next Fibonacci word.
Journal: Theoretical Computer Science - Volume 363, Issue 2, 28 October 2006, Pages 211-223