کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
438670 690306 2007 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Girard–Reynolds isomorphism (second edition)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The Girard–Reynolds isomorphism (second edition)
چکیده انگلیسی

Jean-Yves Girard and John Reynolds independently discovered the second-order polymorphic lambda calculus, F2. Girard additionally proved a Representation Theorem: every function on natural numbers that can be proved total in second-order intuitionistic predicate logic, P2, can be represented in F2. Reynolds additionally proved an Abstraction Theorem: every term in F2 satisfies a suitable notion of logical relation; and formulated a notion of parametricity satisfied by well-behaved models.We observe that the essence of Girard’s result is a projection from P2 into F2, and that the essence of Reynolds’s result is an embedding of F2 into P2, and that the Reynolds embedding followed by the Girard projection is the identity. We show that the inductive naturals are exactly those values of type natural that satisfy Reynolds’s notion of parametricity, and as a consequence characterize situations in which the Girard projection followed by the Reynolds embedding is also the identity.An earlier version of this paper used a logic over untyped terms. This version uses a logic over typed term, similar to ones considered by Abadi and Plotkin and by Takeuti, which better clarifies the relationship between F2 and P2.This paper uses colour to enhance its presentation. If the link below is not blue, follow it for the colour version.http://homepages.inf.ed.ac.uk/wadler

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 375, Issues 1–3, 1 May 2007, Pages 201-226