کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
438900 690350 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The complexity of learning concept classes with polynomial general dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The complexity of learning concept classes with polynomial general dimension
چکیده انگلیسی

The general dimension is a combinatorial measure that characterizes the number of queries needed to learn a concept class. We use this notion to show that any p-evaluatable concept class with polynomial query complexity can be learned in polynomial time with the help of an oracle in the polynomial hierarchy, where the complexity of the required oracle depends on the query-types used by the learning algorithm. In particular, we show that for subset and superset queries an oracle in suffices. Since the concept class of DNF formulas has polynomial query complexity with respect to subset and superset queries with DNF formulas as hypotheses, it follows that DNF formulas are properly learnable in polynomial time with subset and superset queries and the help of an oracle in . We also show that the required oracle in our main theorem cannot be replaced by an oracle in a lower level of the polynomial-time hierarchy, unless the hierarchy collapses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 350, Issue 1, 18 January 2006, Pages 49-62