کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4391236 1305221 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA)
چکیده انگلیسی

The South Florida Water Management District (District) has built large treatment wetlands, known as Stormwater Treatment Areas (STAs), to reduce excess phosphorus loading to the Everglades. The District conducted research in a prototype treatment wetland, the Everglades Nutrient Removal Project (ENRP), to study biogeochemical processes that are important to treatment performance. Vertical profile measurements of water temperature, dissolved oxygen, pH, conductivity and transmission of photosynthetically active radiation (PAR) were made in open-water areas and sites dominated by emergent, floating or submersed vegetation over an annual cycle. Relative thermal resistance to mixing was used to infer the strength of thermal stratification. Long-term diel variation in temperature at the surface and bottom of an open-water and a vegetated site also was measured. Open-water sites were nearly isothermal and had minimal thermal stratification, while vegetated sites were all thermally stratified to some degree. The highest surface water temperatures (>35 °C) occurred in submersed vegetation where much of the light absorbed by leaves and stems was reflected as heat. Oxygen was uniformly low (<4 mg L−1) in emergent and floating vegetation and attributed to shading, high biological oxygen demand and limited reaeration at the surface. Depressed oxygen levels at open-water areas were attributed to high sediment oxygen demand. The highest oxygen concentrations occurred in submersed vegetation beds. Water column pH was unstratified and near circumneutral in the open water and at emergent and floating vegetation sites, while pH was markedly stratified in submersed vegetation, where surface values at times exceeded 9.0. High surface oxygen and pH levels in submersed vegetation were consistent with intense photosynthesis. Conductivity increased at the bottom of emergent and submersed vegetation but not at open-water or floating vegetation sites. PAR transmission was strongly reduced at all sites due to shading and/or absorption by dissolved organic carbon. Light extinction coefficients were markedly higher at vegetated sites compared to the open water. Peak irradiance shifted to longer wavelengths (538–643 nm) and both short (<400 nm) and long (>700 nm) wavelengths were largely attenuated at 60 cm relative to the surface. Long-term monitoring at a vegetated site revealed periods of inverse thermal stratification and dampened diel variation in temperatures at the bottom compared to open water.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Engineering - Volume 27, Issue 4, 31 October 2006, Pages 322–330
نویسندگان
, , ,