کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
439127 690452 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Universal algebra and hardness results for constraint satisfaction problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Universal algebra and hardness results for constraint satisfaction problems
چکیده انگلیسی

We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem for complexity classes L, NL, P, NP and ModpL. These criteria also give non-expressibility results for various restrictions of Datalog. Furthermore, we show that if is not first-order definable then it is L-hard. Our proofs rely on tame congruence theory and on a fine-grain analysis of the complexity of reductions used in the algebraic study of . The results pave the way for a refinement of the dichotomy conjecture stating that each lies in P or is NP-complete and they match the recent classification of [E. Allender, M. Bauland, N. Immerman, H. Schnoor, H. Vollmer, The complexity of satisfiability problems: Refining Schaefer’s theorem, in: Proc. 30 th Math. Found. of Comp. Sci., MFCS’05, 2005, pp. 71–82] for Boolean . We also infer a partial classification theorem for the complexity of when the associated algebra of Γ is the full idempotent reduct of a preprimal algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 410, Issue 18, 17 April 2009, Pages 1629-1647