کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
439129 690452 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Affine systems of equations and counting infinitary logic
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Affine systems of equations and counting infinitary logic
چکیده انگلیسی

We study the definability of constraint satisfaction problems (CSPs) in various fixed-point and infinitary logics. We show that testing the solvability of systems of equations over a finite Abelian group, a tractable CSP that was previously known not to be definable in , is not definable in the infinitary logic with finitely many variables and counting. This implies that it is not definable in least fixed-point logic or its extension with counting. We relate definability of CSPs to their classification obtained from tame congruence theory of the varieties generated by the algebra of polymorphisms of the template structure. In particular, we show that if this variety admits either the unary or affine type, the corresponding CSP is not definable in the infinitary logic with counting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 410, Issue 18, 17 April 2009, Pages 1666-1683