کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
439137 690457 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised slow subspace-learning from stationary processes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Unsupervised slow subspace-learning from stationary processes
چکیده انگلیسی

We propose a method of unsupervised learning from stationary, vector-valued processes. A projection to a low-dimensional subspace is selected on the basis of an objective function which rewards data-variance and penalizes the variance of the velocity vector, thus exploiting the short-time dependencies of the process. We prove bounds on the estimation error of the objective in terms of the β-mixing coefficients of the process. It is also shown that maximizing the objective minimizes an error bound for simple classification algorithms on a generic class of learning tasks. Experiments with image recognition demonstrate the algorithms ability to learn geometrically invariant feature maps.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 405, Issue 3, 17 October 2008, Pages 237-255