کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
439293 690500 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning juntas in the presence of noise
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Learning juntas in the presence of noise
چکیده انگلیسی

We investigate the combination of two major challenges in computational learning: dealing with huge amounts of irrelevant information and learning from noisy data. It is shown that large classes of Boolean concepts that depend only on a small fraction of their variables–so-called juntas–can be learned efficiently from uniformly distributed examples that are corrupted by random attribute and classification noise. We present solutions to cope with the manifold problems that inhibit a straightforward generalization of the noise-free case. Additionally, we extend our methods to non-uniformly distributed examples and derive new results for monotone juntas and for parity juntas in this setting. It is assumed that the attribute noise is generated by a product distribution. Without any restrictions of the attribute noise distribution, learning in the presence of noise is in general impossible. This follows from our construction of a noise distribution P and a concept class C such that it is impossible to learn C under P-noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 384, Issue 1, 24 September 2007, Pages 2-21