کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
440853 691293 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric conditions for tangent continuity of interpolatory planar subdivision curves
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Geometric conditions for tangent continuity of interpolatory planar subdivision curves
چکیده انگلیسی

Curve subdivision is a technique for generating smooth curves from initial control polygons by repeated refinement. The most common subdivision schemes are based on linear refinement rules, which are applied separately to each coordinate of the control points, and the analysis of these schemes is well understood. Since the resulting limit curves are not sufficiently sensitive to the geometry of the control polygons, there is a need for geometric subdivision schemes. Such schemes take the geometry of the control polygons into account by using non-linear refinement rules and are known to generate limit curves with less artefacts. Yet, only few tools exist for their analysis, because the non-linear setting is more complicated. In this paper, we derive sufficient conditions for a convergent interpolatory planar subdivision scheme to produce tangent continuous limit curves. These conditions as well as the proofs are purely geometric and do not rely on any parameterization.


► We study interpolatory geometric subdivision schemes for curves.
► We derive sufficient conditions for geometric continuity of the limit curves.
► The proofs are geometric and do not rely on any parameterization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Aided Geometric Design - Volume 29, Issue 6, August 2012, Pages 332–347
نویسندگان
, ,