کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
440894 691305 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finding the best conic approximation to the convolution curve of two compatible conics based on Hausdorff distance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Finding the best conic approximation to the convolution curve of two compatible conics based on Hausdorff distance
چکیده انگلیسی

We consider the convolution of two compatible conic segments. First, we find an exact parametric expression for the convolution curve, which is not rational in general, and then we find the conic approximation to the convolution curve with the minimum error. The error is expressed as a Hausdorff distance which measures the square of the maximal collinear normal distance between the approximation and the exact convolution curve. For this purpose, we identify the necessary and sufficient conditions for the conic approximation to have the minimum Haudorff distance from the convolution curve. Then we use an iterative process to generate a sequence of weights for the rational quadratic Bézier curves which we use to represent conic approximations. This sequence converges to the weight of the rational quadratic Bézier curve with the minimum Hausdorff distance, within a given tolerance. We verify our method with several examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer-Aided Design - Volume 41, Issue 7, July 2009, Pages 513–524
نویسندگان
, ,