کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
441483 691761 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics
ترجمه فارسی عنوان
شبیه سازی سریع مایعات چسبناک با کشش و هدایت حرارتی با استفاده از دینامیک مبتنی بر موقعیت
کلمات کلیدی
شبیه سازی سیالات، مایع چسبناک، دینامیک مبتنی بر موقعیت، محدودیت هندسی، قابلیت ارتجاعی، هدایت حرارتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• Viscous fluids are simulated using position-based dynamics.
• Time steps can be set larger than those previously adopted for viscous fluid simulations.
• An associated boundary-handling scheme for position-based fluids precisely handles boundary conditions with constraints.
• Thermal conduction is considered for changes in properties and phase transition in materials.
• Materials with different properties can be simulated by adjusting parameters within a unified framework.

Viscous fluids are ubiquitous, and reproducing their damped motions has been in demand for many applications. The most prevalent approach to simulating viscous fluids is based on the Navier–Stokes equations and necessitates viscosity integration. However, to simulate viscous fluids in a numerically stable manner, using explicit viscosity integration severely restricts time steps and requires an excessively long period for computation. In this paper, we propose a novel particle-based Lagrangian method for efficiently simulating viscous fluids by adopting position-based constraints. Our method uses the geometric configuration of particles for the positional constraints to approximate the dynamics of viscous fluids using position-based dynamics; thus the method can plausibly generate their motions while allowing for the use of much larger time steps than those previously adopted in the viscous fluid simulations. We also propose an associated boundary-handling scheme for position-based fluids to precisely specify boundary conditions for the constraints. Additionally, we reproduce elastic deformations of materials by controlling the constraints and incorporate thermal conduction into our framework to simulate resultant changes in particle properties and phase transition in the materials. By adjusting parameters, our method can encompass complex motions of fluids with different properties in a unified framework. Several examples demonstrate the effectiveness as well as versatility of our method.

Figure optionsDownload high-quality image (273 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Graphics - Volume 43, October 2014, Pages 21–30
نویسندگان
, , ,