کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
442537 692285 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shape segmentation by hierarchical splat clustering
ترجمه فارسی عنوان
تقسیم بندی شکل توسط خوشه بندی سلسله مراتبی
کلمات کلیدی
تقسیم بندی، متریک مشابهی، پچ آگاه، بخشی از آگاهی، خوشه بندی سلسله مراتبی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• An optimized L2,1L2,1 metric is used for VSA method.
• A novel patch-aware similarity metric is proposed.
• We improve SDF calculation by using anisotropic smoothing.
• The patch and part aware similarities are adaptively combined into a uniform metric.
• A hierarchy of segmentations are obtained with our hierarchical splat clustering.

This paper presents a novel hierarchical shape segmentation method based on splats for 3D shapes. The major contribution is to propose a new similarity metric based on splats, which combines patch-aware similarity and part-aware similarity adaptively. An optimized L2,1L2,1 metric for VSA (variational shape approximation) method is used to get splats first, and such adaptive similarity metric is used to generate a hierarchy of components automatically through adaptive cluster. As a result, a binary tree is used to represent the hierarchy, in which low level segments are patch-aware regions while high level segments are part-aware components. Therefore, the combination and decomposition relations are clear between segments. Our method is designed to handle arbitrary models, such as CAD model, scanned object, organic shape, large-scale mesh and noisy model. A large number of experiments demonstrate the efficiency of our algorithm.

Figure optionsDownload high-quality image (261 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Graphics - Volume 51, October 2015, Pages 136–145
نویسندگان
, , , , ,