کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
443111 | 692551 | 2010 | 9 صفحه PDF | دانلود رایگان |

In this paper we propose a novel approach for characterizing effective connectivity in functional magnetic resonance imaging (fMRI) data. Unlike most other methods, our approach is nonlinear and does not rely on a priori specification of a model that contains structural information of neuronal populations. Instead, it relies on a nonlinear autoregressive exogenous model and nonlinear system identification theory; the model’s nonlinear connectivities are determined using a least squares method. A statistical test was developed to quantify the significance of the influence that regions exert on one another. We compared this approach with a linear method and applied it to the human visual cortex network. Results show that this method can be used to model nonlinear interaction between different regions for fMRI data.
Journal: Medical Image Analysis - Volume 14, Issue 1, February 2010, Pages 30–38