کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
443161 692578 2008 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Colon polyp detection using smoothed shape operators: Preliminary results
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Colon polyp detection using smoothed shape operators: Preliminary results
چکیده انگلیسی

Computer-aided detection (CAD) algorithms identify locations in computed tomographic (CT) images of the colon that are most likely to contain polyps. Existing CAD methods treat the CT data as a voxelized, volume image. They estimate a curvature-based feature at the mucosal surface voxels. However, curvature is a smooth notion, while our data are discrete and noisy. As a second order differential quantity, curvature amplifies noise. In this paper, we present the smoothed shape operators method (SSO), which uses a geometry processing approach. We extract a triangle mesh representation of the colon surface, and estimate curvature on this surface using the shape operator. We then smooth the shape operators on the surface iteratively. Throughout, we use techniques explicitly designed for discrete geometry. All our computation occurs on the surface, rather than in the voxel grid. We evaluate our algorithm on patient data and provide free-response receiver-operating characteristic performance analysis over all size ranges of polyps. We also provide confidence intervals for our performance estimates. We compare our performance with the surface normal overlap (SNO) method for the same data. A preliminary evaluation of our method on 35 patients yielded the following results (polyp diameter range; sensitivity; false positives/case): (⩾10 mm; 100%; 17.5), (5–10 mm; 89.7%, 21.23), (<5 mm; 59.1%; 23.9) and (overall; 80.3%; 23.9). The evaluation of the SNO method yielded: (⩾10 mm; 75%; 17.5), (5–10 mm; 43.1%; 21.23), (<5 mm; 15.9%; 23.9) and (overall; 38.5%; 23.9).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 12, Issue 2, April 2008, Pages 99–119
نویسندگان
, , , ,