کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
443567 692737 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods
چکیده انگلیسی

Two sparse Bayesian methods were used to derive predictive models of solubility of organic dyes and polycyclic aromatic compounds in supercritical carbon dioxide (scCO2), over a wide range of temperatures (285.9–423.2 K) and pressures (60–1400 bar): a multiple linear regression employing an expectation maximization algorithm and a sparse prior (MLREM) method and a non-linear Bayesian Regularized Artificial Neural Network with a Laplacian Prior (BRANNLP). A randomly selected test set was used to estimate the predictive ability of the models. The MLREM method resulted in a model of similar predictivity to the less sparse MLR method, while the non-linear BRANNLP method created models of substantially better predictivity than either the MLREM or MLR based models. The BRANNLP method simultaneously generated context-relevant subsets of descriptors and a robust, non-linear quantitative structure–property relationship (QSPR) model for the compound solubility in scCO2. The differences between linear and non-linear descriptor selection methods are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Graphics and Modelling - Volume 28, Issue 7, April 2010, Pages 593–597
نویسندگان
, , , ,