کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
443924 692816 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound
ترجمه فارسی عنوان
یادگیری مشترک از فیزیک آماری برگشت پذیری اولتراسونیک و اولویت اطمینان سیگنال برای تشخیص پلاکهای آترواسکلروز با استفاده از سونوگرافی داخل عروقی
کلمات کلیدی
سونوگرافی داخل عضلانی، خصوصیات بافت، توزیع ناکاگامی، اطمینان سیگنال سونوگرافی، فراگیری ماشین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• Multi-scale estimation of statistics of ultrasonic backscattering from tissues.
• Ultrasonic signal confidence estimation for fidelity of statistics estimation.
• Machine learning of US statistical physics and signal confidence of heterogeneous tissue.
• Use of the framework for heterogeneous atherosclerotic plaque characterization.
• Probabilistic characterization of co-localized heterogeneous tissues.

Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper.

Figure optionsDownload high-quality image (169 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 18, Issue 1, January 2014, Pages 103–117
نویسندگان
, , , , , , , , , ,