کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
445234 693159 2010 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram
چکیده انگلیسی

We present a machine learning approach called shape regression machine (SRM) for efficient segmentation of an anatomic structure that exhibits a deformable shape in a medical image, e.g., left ventricle endocardial wall in an echocardiogram. The SRM achieves efficient segmentation via statistical learning of the interrelations among shape, appearance, and anatomy, which are exemplified by an annotated database. The SRM is a two-stage approach. In the first stage that estimates a rigid shape to solve an automatic initialization problem, it derives a regression solution to object detection that needs just one scan in principle and a sparse set of scans in practice, avoiding the exhaustive scanning required by the state-of-the-art classification-based detection approach while yielding comparable detection accuracy. In the second stage that estimates the nonrigid shape, it again learns a nonlinear regressor to directly associate nonrigid shape with image appearance. The underpinning of both stages is a novel image-based boosting ridge regression (IBRR) method that enables multivariate, nonlinear modeling and accommodates fast evaluation. We demonstrate the efficiency and effectiveness of the SRM using experiments on segmenting the left ventricle endocardium from a B-mode echocardiogram of apical four chamber view. The proposed algorithm is able to automatically detect and accurately segment the LV endocardial border in about 120 ms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 14, Issue 4, August 2010, Pages 563–581
نویسندگان
,