کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4490875 1317794 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase I on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase I on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes
چکیده انگلیسی

The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the 1-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeACO1), 1-aminocyclopropane-1-carboxylic acid oxidase 3 gene (LeACO3), EIN3-binding F-box 1 gene (LeEBF1), pathogenesis-related protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeACO1 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carried out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Sciences in China - Volume 6, Issue 4, April 2007, Pages 406-413