کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4494502 1318717 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of Long-Term Fertilization on Community Structure of Ammonia Oxidizing and Denitrifying Bacteria Based on amoA and nirK Genes in a Rice Paddy from Tai Lake Region, China
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Impact of Long-Term Fertilization on Community Structure of Ammonia Oxidizing and Denitrifying Bacteria Based on amoA and nirK Genes in a Rice Paddy from Tai Lake Region, China
چکیده انگلیسی

Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A field trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and richnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE profiles showed significant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was significantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitrification potential showed a positive correlation with SOC content, while a significantly lower denitrification potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Integrative Agriculture - Volume 13, Issue 10, October 2014, Pages 2286-2298