کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4495796 1623808 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection
ترجمه فارسی عنوان
پیش بینی انواع پروتئین ساکنان گلژی با استفاده از فرم کلی ترکیبات شبه آمینو چو: رویکردهای انتخابی با حداکثر انصاف از کارافتادگی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی


• A novel general form pseudo-amino acid composition.
• An effective feature selection method to find minimal feature set to predict Golgi-protein types.
• Representing the protein sequence by incorporating evolutionary information.

Recently, several efforts have been made in predicting Golgi-resident proteins. However, it is still a challenging task to identify the type of a Golgi-resident protein. Precise prediction of the type of a Golgi-resident protein plays a key role in understanding its molecular functions in various biological processes. In this paper, we proposed to use a mutual information based feature selection scheme with the general form Chou's pseudo-amino acid compositions to predict the Golgi-resident protein types. The positional specific physicochemical properties were applied in the Chou's pseudo-amino acid compositions. We achieved 91.24% prediction accuracy in a jackknife test with 49 selected features. It has the best performance among all the present predictors. This result indicates that our computational model can be useful in identifying Golgi-resident protein types.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 402, 7 August 2016, Pages 38–44
نویسندگان
, ,