کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4497421 1318933 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimating trees from filtered data: Identifiability of models for morphological phylogenetics
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Estimating trees from filtered data: Identifiability of models for morphological phylogenetics
چکیده انگلیسی

As an alternative to parsimony analyses, stochastic models have been proposed (Lewis, 2001 and Nylander et al., 2004) for morphological characters, so that maximum likelihood or Bayesian analyses may be used for phylogenetic inference. A key feature of these models is that they account for ascertainment bias, in that only varying, or parsimony-informative characters are observed. However, statistical consistency of such model-based inference requires that the model parameters be identifiable from the joint distribution they entail, and this issue has not been addressed.Here we prove that parameters for several such models, with finite state spaces of arbitrary size, are identifiable, provided the tree has at least eight leaves. If the tree topology is already known, then seven leaves suffice for identifiability of the numerical parameters. The method of proof involves first inferring a full distribution of both parsimony-informative and non-informative pattern joint probabilities from the parsimony-informative ones, using phylogenetic invariants. The failure of identifiability of the tree parameter for four-taxon trees is also investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 263, Issue 1, 7 March 2010, Pages 108–119
نویسندگان
, , ,