کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4497853 1318954 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational analysis of phenotypic space in heterologous polyketide biosynthesis—Applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Computational analysis of phenotypic space in heterologous polyketide biosynthesis—Applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae
چکیده انگلیسی

Polyketides represent a class of natural product small molecules with an impressive range of medicinal activities. In order to improve access to therapeutic polyketide compounds, heterologous metabolic engineering has been applied to transfer polyketide genetic pathways from often fastidious native hosts to more industrially-amenable heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae, or Streptomyces coelicolor. Efforts thus far have resulted in titers either inferior to the native host and significantly below the theoretical yield, emphasizing the need to computationally investigate and engineer the interaction between native and heterologous metabolism for the improved production of heterologous polyketide compounds. In this work, we applied flux balance analysis on genome-scale models to simulate cellular metabolism and 6-deoxyerythronolide B (the cyclized polyketide precursor to erythromycin) production in three common heterologous hosts (E. coli, Bacillus subtilis, and S. cerevisiae) under a variety of carbon-source and medium compositions. We then undertook minimization of metabolic adjustment optimization to identify single and double gene-knockouts that resulted in increased polyketide production while maintaining cellular growth. For the production of 6-deoxyerythronolide B, the results suggest B. subtilis and E. coli are better heterologous hosts when compared to S. cerevisiae and that several single and multiple gene-knockout mutants are computationally predicted to improve specific production, in some cases, over 25-fold.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 262, Issue 2, 21 January 2010, Pages 197–207
نویسندگان
, , ,