کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4499217 | 1319019 | 2006 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using pseudo-amino acid composition and support vector machine to predict protein structural class
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
As a result of genome and other sequencing projects, the gap between the number of known protein sequences and the number of known protein structural classes is widening rapidly. In order to narrow this gap, it is vitally important to develop a computational prediction method for fast and accurately determining the protein structural class. In this paper, a novel predictor is developed for predicting protein structural class. It is featured by employing a support vector machine learning system and using a different pseudo-amino acid composition (PseAA), which was introduced to, to some extent, take into account the sequence-order effects to represent protein samples. As a demonstration, the jackknife cross-validation test was performed on a working dataset that contains 204 non-homologous proteins. The predicted results are very encouraging, indicating that the current predictor featured with the PseAA may play an important complementary role to the elegant covariant discriminant predictor and other existing algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 243, Issue 3, 7 December 2006, Pages 444-448
Journal: Journal of Theoretical Biology - Volume 243, Issue 3, 7 December 2006, Pages 444-448
نویسندگان
Chao Chen, Yuan-Xin Tian, Xiao-Yong Zou, Pei-Xiang Cai, Jin-Yuan Mo,