کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4518162 1624997 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment
ترجمه فارسی عنوان
کاهش پس از انتاریو آنتراکنوز و افزایش مقاومت به بیماری در رسیدن میوه مانگو توسط درمان نیتریک اکسید
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی


• Nitric oxide (NO) inhibited anthracnose, Colletotrichum gloeosporioides, in mango fruit.
• NO did not exert direct antifungal activity against C. gloeosporioides in vitro.
• NO induced defense-related enzymes and inhibited ripening in mango fruit.
• NO treatment could be a promising strategy for controlling mango anthracnose.

Nitric oxide (NO) acts as an important signal molecule with diverse physiological functions in plants. In this study we investigated the effects and possible mechanisms of exogenous NO on anthracnose caused by Colletotrichum gloeosporioides in mango fruit. ‘Guifei’ mango fruit were treated with NO donor (sodium nitroprusside of 0.1 mM) at 25 °C for 5 min, inoculated with spore suspension of C. gloeosporioides after 24 h of NO treatment, and stored at ambient temperature (25 °C). NO treatment effectively suppressed lesion development on mango fruit inoculated with C. gloeosporioides, and lesion diameters at 2 through 8 d in NO-treated fruit averaged 30% lower than those in control fruit. Additionally, NO treatment reduced natural anthracnose incidence and severity of mango fruit ripened at ambient temperature, and the values of both parameters from 4 to 10 d of storage in NO-treated fruit averaged 40 and 45% lower, respectively, than those for control fruit. NO did not exhibit in vitro antifungal activity against C. gloeosporioides. NO treatment enhanced the activities of defense-related enzymes including phenylalanine ammonia-lyase (PAL), cinnamate-hydroxylase (C4H), 4-coumarate: CoA ligase (4CL), peroxidase (POD), β-1,3-glucanase (GLU) and chitinase (CHT). NO treatment also promoted the accumulation of total phenolics, flavonoids and lignin that might contribute to inhibition of the pathogen. In addition to antifungal efficacy, NO treatment delayed flesh softening, yellowing, and changes in soluble solids content (SSC) and titratable acidity (TA), and peaks of respiration rate and ethylene production during ripening. These results suggest that the resistance of NO-treated mango to anthracnose may be attributed to activation of defense responses as well as delay of ripening.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Postharvest Biology and Technology - Volume 97, November 2014, Pages 115–122
نویسندگان
, , , , , , ,