کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4528894 1625926 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis)
چکیده انگلیسی


• A harmful dinoflagellate Heterocapsa circularisquama has light-dependent and -independent haemolytic agents.
• The light-independent haemolytic agents located on the cell surface may be mainly responsible for the toxic action.
• The ruptured cells can suppress the live cell-mediated light-independent haemolytic activity and toxicity to rotifer.
• The light-dependent haemolytic agents discharged from the ruptured cells may contain porphyrin derivatives with suppressive effect on the toxic action.
• Physical destruction of Heterocapsa circularisquama can lead to mitigation of various harmful algae species.

A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both activities might be derived from common compounds. Our results suggest that the photosensitising haemolytic toxin discharged from ruptured H. circularisquama cells has a relatively broad spectrum of phytoplankton toxicity, and that physical collapse of H. circularisquama cells can lead not only to the disappearance of its own toxicity, but also to mitigation of the effects of other HABs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volume 179, October 2016, Pages 95–102
نویسندگان
, , , , , , , , , ,