کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4529676 1625976 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows
چکیده انگلیسی

The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazole inhibits the activity of two cytochrome P450s (CYPs) key to sex steroid production in vertebrates, CYP11a (cholesterol side chain cleavage) and CYP17 (c17α-hydroxylase/17, 20-lyase). Sexually mature fish were exposed to water-borne KTC (30 or 300 μg/L) in a flow-through system for up to 8 d, following which animals were allowed to recover in clean water. Fish were sampled after 1, 4 and 8 d of exposure, and after 1, 8 and 16 d of recovery. A shorter-term time-course experiment also was conducted in which females were sampled on seven occasions during a 12 h KTC exposure. Ketoconazole consistently depressed ex vivo gonadal synthesis of testosterone (T) in both sexes, and 17β-estradiol (E2) in females during both exposure and recovery phases of the time-course studies. Effects on ex vivo steroidogenesis in females occurred within as little as 1 h of exposure. Plasma concentrations of T in males and E2 in females also were depressed by exposure to KTC, but these decreases did not persist to the same degree as observed for the ex vivo effects. In females, after decreases within 12 h, plasma E2 concentrations were similar to (or greater than) controls at 24 h of exposure, while in males, plasma T returned to levels comparable to controls within 1 d of cessation of KTC exposure. The discrepancy between the ex vivo and in vivo data at later stages in the test is consistent with some type of compensatory response to KTC in fish. However, we were unable to ascertain the mechanistic basis for such a response. For example, although a number of genes related to steroid synthesis (e.g., cyp11a, cyp17) were up-regulated in the gonads of both males and females during the exposure and early recovery phases of the experiment, this did not seem to account for the resurgence in plasma steroid concentrations in KTC-exposed fish. Further studies focused on metabolism and clearance of steroids might lend insights as to the effects of KTC on plasma steroid concentrations. Overall, our results demonstrate the complex, temporally dynamic nature of the vertebrate HPG system in response to chemical stressors.


► Fathead minnows (Pimephales promelas) were exposed to the fungicide ketoconazole in a time-course study.
► Ketoconazole caused rapid and persistent depressions in sex steroid (testosterone, estradiol) synthesis by gonad explants from males and females.
► Plasma concentrations of testosterone and estradiol did not remain depressed to the same degree.
► Ketoconazole caused up-regulation in gonadal expression of two cytochrome P450 (CYP) isozymes involved in steroidogenesis, CYP11A and CYP17.
► Recovery of plasma steroid concentrations may be related to decreased hepatic metabolism/clearance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volumes 114–115, 15 June 2012, Pages 88–95
نویسندگان
, , , , , , , , ,