کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4530131 1324683 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury
چکیده انگلیسی

The molecular mechanisms underlying the neurotoxicity of methylmercury (MeHg), a ubiquitous environmental contaminant, are not yet fully understood. Furthermore, there is a lack of biomarkers of MeHg neurotoxicity for use in environmental monitoring. We have undertaken a proteomic analysis of brains from Atlantic cod (Gadus morhua) exposed to 0, 0.5 and 2 mg/kg MeHg administered by intraperitoneal injection. The doses were given in two injections, half of the dose on the first day and the second half after 1 week, and the total exposure period lasted 2 weeks. Using 2-DE coupled with MALDI-TOF MS and MS/MS, we observed the level of 71 protein spots to be 20% or more significantly altered following MeHg exposure, and successfully identified 40 of these protein spots. Many of these proteins are associated with main known molecular targets and mechanisms of MeHg-induced neurotoxicity in mammals, such as mitochondrial dysfunction, oxidative stress, altered calcium homeostasis and tubulin/disruption of microtubules. More interestingly, several of the affected proteins, with well-established or recently demonstrated critical functions in nervous system-specific processes, have not previously been associated with MeHg exposure in any species. These proteins include the strongest up-regulated protein, pyridoxal kinase (essential for synthesis of several neurotransmitters), G protein (coupled to neurotransmitter receptors), nicotinamide phosphoribosyl-transferase (protection against axonal degeneration), dihydropyrimidinase-like 5 (or collapsin response mediator protein 5, CRMP-5) (axon guidance and regeneration), septin (dendrite development), phosphatidylethanolamine binding protein (precursor for hippocampal cholinergic neurostimulating peptide) and protein phosphatase 1 (control of brain recovery by synaptic plasticity). The results of the present study aid our understanding of molecular mechanisms underlying MeHg neurotoxicity and defense responses, and provide a large panel of protein biomarker candidates for aquatic environmental monitoring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volume 100, Issue 1, 1 October 2010, Pages 51–65
نویسندگان
, , , ,