کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
453496 694941 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tackling redundancy in text summarization through different levels of language analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Tackling redundancy in text summarization through different levels of language analysis
چکیده انگلیسی

One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.


► The problem of redundancy in text summarization is analyzed from three perspectives.
► The best use of exploiting redundancy in a text summarization system is analyzed.
► Semantic-based methods detect up to 90% of redundant data, being the best ones.
► Lexical-based approaches only detect 19% of redundant information.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Standards & Interfaces - Volume 35, Issue 5, September 2013, Pages 507–518
نویسندگان
, ,