کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
453933 695074 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Image and medical annotations using non-homogeneous 2D ruler learning models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Image and medical annotations using non-homogeneous 2D ruler learning models
چکیده انگلیسی


• A metric learning model directly calibrating measured numerics of feature data.
• A 2D semi-metric model by relaxing one degree of freedom.
• Simple and intuitively natural models solvable by convex quadratic programming.

We propose a metric learning model called “non-homogeneous 2D rulers”, in which the measured numerics of the observed feature data are directly calibrated on non-homogeneous 2D rulers. It is actually the definition of variables relaxed by one degree of freedom, which constitutes a 2D semi-metric model. Our proposed models are intuitively natural, and they are applied to solve various types of annotation problems, and particularly the recurrent spontaneous abortion prediction medical annotation problem. Experiments on the LabelMe, UIUC-sports, TRECVID 2005, MSRC, Barcelona, and our own collected clinical datasets show that, even with simple kNN, our models are competitive among the state of the art.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 50, February 2016, Pages 102–110
نویسندگان
, , , ,