کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4568287 | 1331293 | 2011 | 8 صفحه PDF | دانلود رایگان |
Fruit cracking after rain limits the production of a number of crops, including some Ribes species. To gain a better understanding of the factors involved in cracking, fruit growth, deposition of the cuticular membrane (CM), water uptake and fruit cracking were studied in black currant (Ribes nigrum L. cv. Zema), gooseberry (Ribes uva-crispa L. cv. Rote Triumph), and jostaberry (Ribes nidigrolaria B. cv. Jostine). Fruit surface area and fresh mass increased continuously throughout development, whereas deposition of the CM was biphasic. CM mass per fruit increased rapidly up to 42, 41, and 49 days after full bloom (DAFB) in black currant, gooseberry, and jostaberry, respectively. Thereafter, CM mass per fruit remained constant in gooseberry and jostaberry or increased at a lower rate in black currant. The cessation of or reduced rate of CM deposition resulted in a decrease in CM mass per unit area in all berries. Elastic strain of the CM at maturity averaged 23.8% and 19.5% in gooseberry and jostaberry, respectively, and only 8.2% in black currant. Microcracks in the CM were observed first in gooseberry and jostaberry 64 DAFB, whereas there were no microcracks in black currant. Water uptake into mature detached berries was linear over 2 h of incubation. Rates of uptake were highest in gooseberry followed by black currant and jostaberry. Relative uptake was similar via the cut end of the pedicel (32.1%), the apex of the fruit (34.7%) and the fruit surface (33.2%). Rates of water uptake through the fruit surface were positively related to surface area. Average fruit water potential for black currant, gooseberry, and jostaberry was −2.14 ± 0.17, −1.24 ± 0.03, and −1.89 ± 0.20 MPa, while the permeability for osmotic water uptake was 7.7 ± 0.4 × 10−8, 5.2 ± 0.1 × 10−8, and 3.3 ± 0.3 × 10−8 m s−1. Incubating whole fruit in deionized water for 72 h resulted in more cracked jostaberries (94%) than black currants (74%) or gooseberries (50%). A comparison of our findings in Ribes berries with published data for the sweet cherry drupe revealed that the berries fitted the relationships established in sweet cherry among fruit growth, cuticle deposition, strain of the cuticle, microcracking, permeability for osmotic water uptake, frequency of stomata and cracking. The Ribes berries were less susceptible to cracking than sweet cherry.
Research highlights
► There is a mismatch of cuticle deposition and fruit surface expansion in Ribes berries.
► The fruit apex represents a region of preferential water uptake in Ribes berries.
► Cracking is more frequent in jostaberry than in gooseberry and black currant.
► The higher cracking susceptibility of jostaberry is accounted for by a weaker mechanical architecture of fruit due to larger epidermal cells and higher strain of the cuticle.
► Ribes berries are less cracking susceptible than sweet cherries.
Journal: Scientia Horticulturae - Volume 128, Issue 3, 11 April 2011, Pages 289–296