کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4582727 1630370 2015 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Almost perfect nonlinear trinomials and hexanomials
ترجمه فارسی عنوان
تقریبا کامل ترینهای سه گانه غیرخطی و هگزانیوم ها یک؟
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

In this paper we give a new family of almost perfect nonlinear (APN) trinomials of the form X2k+1+(trmn(X))2k+1 on F2nF2n where gcd(k,n)=1gcd(k,n)=1 and n=2m=4tn=2m=4t, and prove its important properties. The family satisfies for all n=4tn=4t an interesting property of the Kim function which is, up to equivalence, the only known APN function equivalent to a permutation on F22mF22m. As another contribution of the paper, we consider a family of hexanomials gC,kgC,k which was shown to be differentially 2gcd(m,k)2gcd(m,k)-uniform by Budaghyan and Carlet (2008) when a quadrinomial PC,kPC,k has no roots in a specific subgroup. In this paper, for all (m,k)(m,k) pairs, we characterize, construct and count all C∈F2nC∈F2n satisfying the condition. Bracken, Tan and Tan (2014) and Qu, Tan and Li (2014) constructed some elements C   satisfying the condition when m≡2 or 4(mod 6) and m≡0(mod 6) respectively, both requiring gcd(m,k)=1gcd(m,k)=1. Bluher (2013) proved that such C   exists if and only if k≠mk≠m without characterizing, constructing or counting those C  . To prove the results, we effectively use a Trace-0/Trace-1 (relative to the subfield F2mF2m) decomposition of F2nF2n.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 33, May 2015, Pages 258–282
نویسندگان
,