کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4582864 1630375 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finding normal bases over finite fields with prescribed trace self-orthogonal relations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Finding normal bases over finite fields with prescribed trace self-orthogonal relations
چکیده انگلیسی

Normal bases and self-dual normal bases over finite fields have been found to be very useful in many fast arithmetic computations. It is well-known that there exists a self-dual normal basis of F2nF2n over F2F2 if and only if 4∤n4∤n. In this paper, we prove that there exists a normal element α   of F2nF2n over F2F2 corresponding to a prescribed vector a=(a0,a1,…,an−1)∈F2n such that ai=Tr2n|2(α1+2i)ai=Tr2n|2(α1+2i) for 0⩽i⩽n−10⩽i⩽n−1, where n is a 2-power or odd, if and only if the given vector a   is symmetric (ai=an−iai=an−i for all i  , 1⩽i⩽n−11⩽i⩽n−1), and one of the following is true.(1)n=2s⩾4n=2s⩾4, a0=1a0=1, an/2=0an/2=0, ∑1⩽i⩽n/2−1,(i,2)=1ai=1;(2)n   is odd, (∑0⩽i⩽n−1aixi,xn−1)=1(∑0⩽i⩽n−1aixi,xn−1)=1.Furthermore we give an algorithm to obtain normal elements corresponding to prescribed vectors in the above two cases. For a general positive integer n   with 4|n4|n, some necessary conditions for a vector to be the corresponding vector of a normal element of F2nF2n over F2F2 are given. And for all n   with 4|n4|n, we prove that there exists a normal element of F2nF2n over F2F2 such that the Hamming weight of its corresponding vector is 3, which is the lowest possible Hamming weight.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 28, July 2014, Pages 1–21
نویسندگان
, , , ,