کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4582999 | 1630383 | 2013 | 10 صفحه PDF | دانلود رایگان |

In this paper we study the dual codes of a wide family of evaluation codes on norm-trace curves. We explicitly find out their minimum distance and give a lower bound for the number of their minimum-weight codewords. A general geometric approach is performed and applied to study in particular the dual codes of one-point and two-point codes arising from norm-trace curves through Goppaʼs construction, providing in many cases their minimum distance and some bounds on the number of their minimum-weight codewords. The results are obtained by showing that the supports of the minimum-weight codewords of the studied codes obey some precise geometric laws as zero-dimensional subschemes of the projective plane. Finally, the dimension of some classical two-point Goppa codes on norm-trace curves is explicitely computed.
Journal: Finite Fields and Their Applications - Volume 20, March 2013, Pages 30-39