کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4583077 | 1333879 | 2010 | 12 صفحه PDF | دانلود رایگان |

Functions with low differential uniformity can be used as the s-boxes of symmetric cryptosystems as they have good resistance to differential attacks. The AES (Advanced Encryption Standard) uses a differentially 4 uniform function called the inverse function. Any function used in a symmetric cryptosystem should be a permutation. Also, it is required that the function is highly nonlinear so that it is resistant to Matsui's linear attack. In this article we demonstrate that the highly nonlinear permutation f(x)=x22k+k2+1 on the field F24k, discovered by Hans Dobbertin (1998) [1], has differential uniformity of four and hence, with respect to differential and linear cryptanalysis, is just as suitable for use in a symmetric cryptosystem as the inverse function. Its suitability with respect to other attacks remains to be seen.
Journal: Finite Fields and Their Applications - Volume 16, Issue 4, July 2010, Pages 231-242