| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4583280 | 1333892 | 2011 | 5 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the number of distinct values of a class of functions over a finite field
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Several authors have recently shown that a planar function over a finite field of order q must have at least (q+1)/2 distinct values. In this note this result is extended by weakening the hypothesis significantly and strengthening the conclusion. We also give an algorithm for determining whether a given bivariate polynomial ϕ(X,Y) can be written as f(X+Y)−f(X)−f(Y) for some polynomial f. Using the ideas of the algorithm, we then show a Dembowski–Ostrom polynomial is planar over a finite field of order q if and only if it yields exactly (q+1)/2 distinct values under evaluation; that is, it meets the lower bound of the image size of a planar function.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 17, Issue 3, May 2011, Pages 220-224
											Journal: Finite Fields and Their Applications - Volume 17, Issue 3, May 2011, Pages 220-224