کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583427 1333902 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On systems of linear and diagonal equation of degree pi+1pi+1 over finite fields of characteristic p
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On systems of linear and diagonal equation of degree pi+1pi+1 over finite fields of characteristic p
چکیده انگلیسی

One of the most important questions in number theory is to find properties on a system of equations that guarantee solutions over a field. A well-known problem is Waring's problem that is to find the minimum number of variables such that the equation x1d+⋯+xnd=β has solution for any natural number β  . In this note we consider a generalization of Waring's problem over finite fields: To find the minimum number δ(k,d,pf)δ(k,d,pf) of variables such that a systemx1k+⋯+xnk=β1,x1d+⋯+xnd=β2 has solution over FpfFpf for any (β1,β2)∈Fpf2. We prove that, for p>3p>3, δ(1,pi+1,pf)=3δ(1,pi+1,pf)=3 if and only if f≠2if≠2i. We also give an example that proves that, for p=3p=3, δ(1,i3+1,f3)⩾4δ(1,3i+1,3f)⩾4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 14, Issue 3, July 2008, Pages 648–657
نویسندگان
, , , ,