کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4583486 | 1333905 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Typical primitive polynomials over integer residue rings
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let N be a product of distinct prime numbers and Z/(N) be the integer residue ring modulo N. In this paper, a primitive polynomial f(x) over Z/(N) such that f(x) divides xs−c for some positive integer s and some primitive element c in Z/(N) is called a typical primitive polynomial. Recently typical primitive polynomials over Z/(N) were shown to be very useful, but the existence of typical primitive polynomials has not been fully studied. In this paper, for any integer m⩾1, a necessary and sufficient condition for the existence of typical primitive polynomials of degree m over Z/(N) is proved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 15, Issue 6, December 2009, Pages 796-807
Journal: Finite Fields and Their Applications - Volume 15, Issue 6, December 2009, Pages 796-807