کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583486 1333905 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Typical primitive polynomials over integer residue rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Typical primitive polynomials over integer residue rings
چکیده انگلیسی

Let N be a product of distinct prime numbers and Z/(N) be the integer residue ring modulo N. In this paper, a primitive polynomial f(x) over Z/(N) such that f(x) divides xs−c for some positive integer s and some primitive element c in Z/(N) is called a typical primitive polynomial. Recently typical primitive polynomials over Z/(N) were shown to be very useful, but the existence of typical primitive polynomials has not been fully studied. In this paper, for any integer m⩾1, a necessary and sufficient condition for the existence of typical primitive polynomials of degree m over Z/(N) is proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 15, Issue 6, December 2009, Pages 796-807