کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583585 1630444 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gauss composition for P1P1, and the universal Jacobian of the Hurwitz space of double covers
ترجمه فارسی عنوان
ترکیب گاوس برای P1P1 و ژاکوبین جهانی فضای Hurwitz از پوشش دوگانه
کلمات کلیدی
ژاکوبین‌ها؛ ژاکوبین‌های جهانی؛ منحنی بیضوی؛ Compactifications از فضاهای مدول؛ بسته نرم افزاری خط بر روی منحنی بیضوی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

In this paper, we give an explicit description of the moduli space of line bundles on hyperelliptic curves, including singular curves. We study the universal Jacobian J2,g,nJ2,g,n of degree n   line bundles over the Hurwitz stack of double covers of P1P1 by a curve of genus g  . Our main results are: the construction of a smooth, irreducible, universally closed (but not separated) moduli compactification J‾bd2,g,n of J2,g,nJ2,g,n whose points we describe simply and explicitly as sections of certain vector bundles on P1P1; a description of the global geometry and moduli properties of these stacks; and a computation of the Picard groups of J‾bd2,g,n and J2,g,nJ2,g,n in the cases when n−gn−g is even. An important ingredient of our work is the parametrization of line bundles on double covers by binary quadratic forms. This parametrization generalizes the classical number theoretic correspondence between ideal classes of quadratic rings and integral binary quadratic forms, which in particular gives the group law on integral binary quadratic forms first discovered by Gauss.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 470, 15 January 2017, Pages 320–352
نویسندگان
, ,