کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4583687 | 1630450 | 2016 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accumulation points of real Schur roots
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let k be an algebraically closed field and Q be an acyclic quiver with n vertices. Consider the category rep(Q) of finite dimensional representations of Q over k. The exceptional representations of Q, that is, the indecomposable objects of rep(Q) without self-extensions, correspond to the so-called real Schur roots of the usual root system attached to Q. These roots are special elements of the Grothendieck group Zn of rep(Q). When we identify the dimension vectors of the representations (that is, the non-negative vectors of Zn) up to positive multiple, we see that the real Schur roots can accumulate in some directions of RnâZn. This paper is devoted to the study of these accumulation points. After giving new properties of the canonical decomposition of dimension vectors, we show how to use this decomposition to describe the rational accumulation points. Finally, we study the irrational accumulation points and we give a complete description of them in case Q is of weakly hyperbolic type.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 464, 15 October 2016, Pages 316-347
Journal: Journal of Algebra - Volume 464, 15 October 2016, Pages 316-347
نویسندگان
Charles Paquette,