کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583780 1630453 2016 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Hilbert coefficients and Northcott's inequality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Generalized Hilbert coefficients and Northcott's inequality
چکیده انگلیسی

Let R be a Cohen–Macaulay local ring of dimension d with infinite residue field. Let I be an R  -ideal that has analytic spread ℓ(I)=dℓ(I)=d, satisfies the GdGd condition and the weak Artin–Nagata property ANd−2−. We provide a formula relating the length λ(In+1/JIn)λ(In+1/JIn) to the difference PI(n)−HI(n)PI(n)−HI(n), where J is a general minimal reduction of I  , PI(n)PI(n) and HI(n)HI(n) are respectively the generalized Hilbert–Samuel polynomial and the generalized Hilbert–Samuel function. We then use it to establish formulas to compute the generalized Hilbert coefficients of I  . As an application, we extend Northcott's inequality to non-mm-primary ideals. Furthermore, when equality holds, we prove that the ideal I enjoys nice properties. Indeed, if this is the case, then the reduction number of I is at most one and the associated graded ring of I   is Cohen–Macaulay. We also recover results of G. Colomé-Nin, C. Polini, B. Ulrich and Y. Xie on the positivity of the generalized first Hilbert coefficient j1(I)j1(I). Our work extends that of S. Huckaba, C. Huneke and A. Ooishi to ideals that are not necessarily mm-primary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 461, 1 September 2016, Pages 177–200
نویسندگان
,