کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583843 1630458 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimension filtration, sequential Cohen–Macaulayness and a new polynomial invariant of graded algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Dimension filtration, sequential Cohen–Macaulayness and a new polynomial invariant of graded algebras
چکیده انگلیسی

Let kk be a field and let A   be a standard NN-graded kk-algebra. Using numerical information of some invariants in the primary decomposition of 0 in A  , namely the so-called dimension filtration, we associate a bivariate polynomial BW(A;t,w)BW(A;t,w), that we call the Björner–Wachs polynomial, to A.It is shown that the Björner–Wachs polynomial is an algebraic counterpart to the combinatorially defined h-triangle of finite simplicial complexes introduced by Björner & Wachs. We provide a characterisation of sequentially Cohen–Macaulay algebras in terms of the effect of the reverse lexicographic generic initial ideal on the Björner–Wachs polynomial. More precisely, we show that a graded algebra is sequentially Cohen–Macaulay if and only if it has a stable Björner–Wachs polynomial under passing to the reverse lexicographic generic initial ideal. We conclude by discussing some connections with the Hilbert series of local cohomology modules, extremal Betti numbers and combinatorial Alexander duality.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 456, 15 June 2016, Pages 250–265
نویسندگان
,