کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583855 1630459 2016 45 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Faces and maximizer subsets of highest weight modules
ترجمه فارسی عنوان
چهره و حداکثر سازی زیر مجموعه از ماژول های مهم وزن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

In this paper we study general highest weight modules VλVλ over a complex finite-dimensional semisimple Lie algebra gg. We present three formulas for the set of weights of a large family of modules VλVλ, which include but are not restricted to all simple modules and all parabolic Verma modules. These formulas are direct and do not involve cancellations, and were not previously known in the literature. Our results extend the notion of the Weyl polytope to general highest weight gg-modules VλVλ.We also show that for all simple modules, the convex hull of the weights is a WJWJ-invariant polyhedron for some parabolic subgroup WJWJ. We compute its vertices, faces, and symmetries – more generally, we also do this for all parabolic Verma modules, and for all modules VλVλ with highest weight λ   not on a simple root hyperplane. To show our results, we extend the notion of convexity to arbitrary additive subgroups A⊂(R,+)A⊂(R,+) of coefficients. Our techniques enable us to completely classify “weak AA-faces” of the support sets wt(Vλ)wt(Vλ), in the process extending classical results of Satake, Borel–Tits, Vinberg, and Casselman, as well as modern variants by Chari–Dolbin–Ridenour and Cellini–Marietti, to general highest weight modules.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 455, 1 June 2016, Pages 32–76
نویسندگان
,