کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583889 1630460 2016 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Zelevinsky classification of unramified representations of the metaplectic group
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Zelevinsky classification of unramified representations of the metaplectic group
چکیده انگلیسی

In this paper a Zelevinsky type classification of genuine unramified irreducible representations of the metaplectic group over a p  -adic field with p≠2p≠2 is obtained. The classification consists of three steps. Firstly, it is proved that every genuine irreducible unramified representation is a fully parabolically induced representation from unramified characters of general linear groups and a genuine irreducible negative unramified representation of a smaller metaplectic group. Genuine irreducible negative unramified representations are described in terms of parabolic induction from unramified characters of general linear groups and a genuine irreducible strongly negative unramified representation of a smaller metaplectic group. Finally, genuine irreducible strongly negative unramified representations are classified in terms of Jordan blocks. The main technical tool is the theory of Jacquet modules.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 454, 15 May 2016, Pages 357–399
نویسندگان
, ,