کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4583988 1630466 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Path lifting properties and embedding between RAAGs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Path lifting properties and embedding between RAAGs
چکیده انگلیسی

For a finite simplicial graph Γ, let G(Γ)G(Γ) denote the right-angled Artin group on the complement graph of Γ. In this article, we introduce the notions of “induced path lifting property” and “semi-induced path lifting property” for immersions between graphs, and obtain graph theoretical criteria for the embeddability between right-angled Artin groups. We recover the result of S.-h. Kim and T. Koberda that an arbitrary G(Γ)G(Γ) admits a quasi-isometric group embedding into G(T)G(T) for some finite tree T. The upper bound on the number of vertices of T   is improved from 22(m−1)222(m−1)2 to m2m−1m2m−1, where m is the number of vertices of Γ. We also show that the upper bound on the number of vertices of T   is at least 2m/42m/4. Lastly, we show that G(Cm)G(Cm) embeds in G(Pn)G(Pn) for n⩾2m−2n⩾2m−2, where CmCm and PnPn denote the cycle and path graphs on m and n vertices, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 448, 15 February 2016, Pages 575–594
نویسندگان
, ,