کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584071 1630472 2015 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noether's problem for groups of order 243
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Noether's problem for groups of order 243
چکیده انگلیسی

Let k be any field, G be a finite group. Let G   act on the rational function field k(xg:g∈G)k(xg:g∈G) by k  -automorphisms defined by h⋅xg=xhgh⋅xg=xhg for any g,h∈Gg,h∈G. Denote by k(G)=k(xg:g∈G)Gk(G)=k(xg:g∈G)G the fixed field. Noether's problem asks, under what situations, the fixed field k(G)k(G) will be rational (= purely transcendental) over k. According to the data base of GAP there are 10 isoclinism families for groups of order 243. It is known that there are precisely 3 groups G   of order 243 (they consist of the isoclinism family Φ10Φ10) such that the unramified Brauer group of C(G)C(G) over CC is non-trivial. Thus C(G)C(G) is not rational over CC. We will prove that, if ζ9∈kζ9∈k, then k(G)k(G) is rational over k   for groups of order 243 other than these 3 groups, except possibly for groups belonging to the isoclinism family Φ7Φ7.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 442, 15 November 2015, Pages 233–259
نویسندگان
, , , ,