کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584419 1630493 2015 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Universal axial algebras and a theorem of Sakuma
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Universal axial algebras and a theorem of Sakuma
چکیده انگلیسی

In the first half of this paper, we define axial algebras: nonassociative commutative algebras generated by axes, that is, semisimple idempotents—the prototypical example of which is Griess' algebra [2] for the Monster group. When multiplication of eigenspaces of axes is controlled by fusion rules, the structure of the axial algebra is determined to a large degree. We give a construction of the universal Frobenius axial algebra on n generators with specified fusion rules, of which all n  -generated Frobenius axial algebras with the same fusion rules are quotients. In the second half, we realise this construction in the Majorana/Ising/Vir(4,3)Vir(4,3)-case on 2 generators, and deduce a result generalising Sakuma's theorem in VOAs [13].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 421, 1 January 2015, Pages 394–424
نویسندگان
, , ,