کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584470 1630488 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On ramifications of Artin–Schreier extensions of surfaces over algebraically closed fields of positive characteristic II
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On ramifications of Artin–Schreier extensions of surfaces over algebraically closed fields of positive characteristic II
چکیده انگلیسی

For a smooth surface X over an algebraically closed field of positive characteristic, we consider the ramification of an Artin–Schreier extension of X. A ramification at a point of codimension 1 of X is understood by the Swan conductor. A ramification at a closed point of X   is understood by the invariant rxrx defined by Kato (1994) [1]. The main theme of this paper is to construct the Young diagram Y(X,D,x)Y(X,D,x) which is closely related to rxrx and to prove Kato's conjecture Kato (1994) [1] for an upper bound of rxrx for a good Artin–Schreier extension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 426, 15 March 2015, Pages 365–376
نویسندگان
,